
Task Management for Heterogeneous Multi-core
Scheduling

Poonam Karande, S.S.Dhotre, Suhas Patil

Computer Engineering Department BVDUCOE

Pune-43(India)

Abstract- Multi-core task scheduling is a challenging problem
with precedence constraint & non-preemptive task. The
existing system uses heterogeneous dual-core scheduling as
well as heterogeneous multi-core scheduling. In this paper we
propose a new approach towards the heterogeneous multi-core
scheduling with dispatcher schemas, where heterogeneous co-
processor can be multiple means that one processor &
multiple heterogeneous co-processors. The Processor is
responsible for handling control signal & heterogeneous co-
processor responsible for data computation. Because of
multiple co-processors dispatcher is needed to determine
which subtask dispatch to which co-processor. We will also
implement migration policies. With different migration
policies it will increase the use of resources and also improve
efficiency and performance.
Keywords- Task scheduling, Multi-core, Heterogeneous.

I. INTRODUCTION
Most Embedded systems which make a system more
dedicated for an application or part of large system are
provided with a heterogeneous multi-core system, where
one general purpose processor and more than one
synergistic co-processor [1], [2], [3] to increase
performance and power capability. To fulfil the user
requirement, the quality of service for applications has to be
met. Different applications are functioning on such a
system with dynamic workloads such as communication
(networking) and personal devices (video), as it varies the
number of simultaneously executing tasks. Thus, an
interactive and predictable online scheduling algorithm is
an essential system specification for a heterogeneous multi-
core system. Still the scheduling problem of heterogeneous
multi-core systems is complex because of precedence
constraints of tasks and non-preemptive execution of tasks
in the synergistic co-processor.
In the past ten years, number of researches has continued
synchronization protocols to determine the task scheduling
problem in multi-core systems by handling the non-
preemptive co-processor as a resource. In this the handling
of priority inversion bring on to low system utilization [4],
[5].The low system utilization is because of task execution
with lower priority on the processor prohibited even when
the processor is unproductive, if a task with higher priority
is executed in the co-processor. To make better system
utilization, authors explained frameworks for extending
previous protocols to such system and composed the
prohibited constraints for signal processing co-
processors[6],[7].
Earlier research has enhanced multiprocessor
scheduling algorithm for homogeneous multi-core

system [8], [9], [10], [11] to prevent the priority inversion
management problem. Still these algorithms are not suitable
for heterogeneous multi-core system. The explanation
behind this is that the both processor and co-processor are
asymmetric and the co-processor is not appropriate for pre-
emptive task execution because of significant pre-emption
overhead. This overhead occurs due to number of registers,
pipeline stages [12], [13], and cache flushes [14].
This effort is stimulated by need for heterogeneous multi-
core system for an online scheduler, and also hazard
enforced by the accommodation between handling of
priority inversion and enhancement of system utilization. In
this proposed system the novel idea is a heterogeneous
multi-core scheduling algorithm with a key technique
dispatcher mechanism having different schemas. In
heterogeneous multi-core, one general purpose processor
and more than one synergistic co-processor which execute
the different tasks with high speeds. In this, general purpose
processor is responsible for handling control signals and
synergistic co-processors responsible for data computation.
A dispatcher mechanism is used because of multiple co-
processors dispatcher is needed to determine which ready
subtask dispatch to which co-processor. In that dispatcher
mechanism can be implemented using different dispatcher
schemas such as global schema, partition schema, and
hybrid schema [15]. This paper also contributes towards
task migration policies [24] which will improve the
performance.
This paper contributes three aspects:

 It gives better or high performance than the
previous scheduling.

 It uses dispatcher mechanism to dispatch different
subtask.

 It uses task migration policies to increase the
utilization of resources.

The rest of this paper is organized as follows: In section 3
we will analyse the previous heterogeneous dual-core
architecture as well as various multi-core scheduling
approaches. Section 4 proposes new heterogeneous multi-
core system for scheduling. Section 5 proposes algorithm
for heterogeneous multi-core scheduling. We draw a
conclusion in section 6.

II. BACKGROUND AND MOTIVATION
Fast and efficient performance is the necessity of today’s
technology. Hard real time system has the critical factor of
time i.e. hard real-time system should required task to be
complete within accurate time. Applications such as

Poonam Karande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 636-639

www.ijcsit.com 636

satellite launching require performing thousands of tasks
with much concern about time. An embedded system also
requires multitasking within integrated circuit. Today’s
applications based on either soft real-time system or hard
real-time system involving multiplicity of tasks within time
constraint. So we have to migrate from dual-core to multi-
core system along with heterogeneity of co-processors
which improves the performance of the system.

III. EXISTING SYSTEM
Bj¨orn Andersson et al. has proposed the technique for
Assigning Real-Time Tasks on Heterogeneous
Multiprocessors with Two Unrelated Types of Processors
[16]. In this paper they present a new algorithm is FF-3C,
which offers low time-complexity as well as good
performance. They also present number of extensions to
FF-3C; all extensions offer the same Time-complexity and
better performance as that of FF-3C. And they also offer
improved average-case performance.
I-hong hou and p. r. kumar has proposed Scheduling
Periodic Real-Time Tasks with Heterogeneous Reward
Requirements [17]. In this paper they have explained the
problem of scheduling periodic real-time tasks which has
precise minimal reward requirements. They also consider
positions where tasks generate instance that can be provided
subjective service times before their deadlines, and get
rewards based on the service times received by the instance
of the task. They also wind up that this model is appropriate
with the estimated computation models also increasing
reward with expanding service models. They also add to
accomplish different reward requirements of Different tasks.
This provides better equity as also as allowing fine-grained
accommodation between tasks.
Hsiang-Kuo Tang et al. have proposed the approach for
Combining Hard Periodic and Soft Aperiodic Real-Time
Task Scheduling on Heterogeneous Compute Resources
[18]. In this paper they spotlight on scheduling soft
aperiodic tasks along with hard time limit periodic Tasks
with constraints on heterogeneous real-time systems. Even
they also explain a method to upgrade aperiodic task
responsiveness without partitioning periodic task time limit
guarantees, by first scheduling periodic tasks offline, then
dynamically scheduling aperiodic tasks in the remaining
resource slack time.
Zhe Wang et al. propose Temperature-aware Task
Partitioning for Real-Time Scheduling in Embedded
Systems[19].In this paper they have explained task
partitioning as an impressive manner to reduce the crest
temperature in embedded systems running either a set of
periodic heterogeneous tasks with identical period or
periodic heterogeneous tasks with individual period.
Pengliu Tan et al. present A Hybrid Real-Time Scheduling
Approach on Multi-Core Architectures [20]. In this paper
for real-time task on homogeneous multi-core architecture
they provide a hybrid scheduling approach. This approach
uses the top level and a bottom level scheduling scheme. In
the top level scheme, for each scheduling policy a sporadic
server is committed. To schedule the dispatched tasks
according to its scheduling policy each sporadic server is
used. In the bottom level scheme, a RM OS scheduler is

adopted to manage and schedule the top level sporadic
servers.
Li Wenjing and Wang Lisheng have proposed Energy
Considered Scheduling Algorithm Based on Heterogeneous
Multi-core Processor [21]. In this paper they don’t only
consider the tasks execution time but also energy
consumption in embedded system and they also explain
three scheduling principles such as the minimum earliest
finish time, load balancing and low energy consumption
which are convenient to independent task scheduling in
heterogeneous multi-core processor. And also present new
algorithm ECSA which consider these three principles.
Derong Liu et al. have proposed Pipeline-based Scheduling
for Heterogeneous Multi-core Systems [22]. In this they
have proposed a pipeline-based scheduling algorithm to
progress the throughput for heterogeneous multi-core. This
algorithm reduces the communication and idle time by
assigning most parent-child task pairs on the same
processor, and equity processors work time through a
balance condition.

IV. PROPOSED SYSTEM

In this section, we have proposed a heterogeneous multi-
core scheduling algorithm for task with a key technique
called a dispatcher mechanism.

Figure 1: Overview of Multi-core system

Firstly, heterogeneous multi-core system is an integrated
circuit(IC) to which two or more heterogeneous processors
have been attached to decrease power consumption,
enhanced performance and more efficient processing of
multiple tasks.
Here processor is a component that can read and executes
program instructions; those program instructions tell the
processor what to do such as read data, send data. A
processor component is a central processing unit (CPU), in
which two or more heterogeneous processors are attached
to an integrated circuit. And the cores or processors share
common memory, common bus interface as well as
peripherals. Heterogeneous multi-core is used across many
application domains such as embedded system, network,
digital signal processing and graphics etc. The performance
improvement is gained by the use of heterogeneous multi-

Poonam Karande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 636-639

www.ijcsit.com 637

core system is much depends on the software algorithm
which are used and their implementation.

 Ready queue

Figure 2: System workflow

The proposed system is a heterogeneous multi-core
scheduling algorithm which applying dispatcher mechanism
with different dispatcher schemas [15]. In heterogeneous
multi-core system Processor is responsible for handling
control signals and synergistic co-processors responsible for
data computation. Task execution which is done in a
processor is preemptive here T1, T2.......Tn are numbers of
input tasks given to the processor and task execution in co-
processor is usually non-preemptive, a task might have
large blocking time to schedule. The solution for this
problem, we enter preemption point into co-processor
subtask so that the co-processor can be ‘semipreemptive’
for accommodating a bandwidth server and bounding
blocking times of subtasks. When there are multiple
synergistic co-processors a dispatcher is needed to
determine which subtask dispatch to which co-processor.
Dispatcher mechanism can be implemented using global
schema, partition schema and hybrid schema.
In Global dispatcher schema, each co-processor subtask in
the proposed system is maintained by an appropriate sever.

When the job of the subtask is ready then the corresponding
server sets the completion deadline into the job & indexed
by total order includes it into the global ready queue then
the highest priority tasks are given to heterogeneous co-
processors to process. No processor is ever idled when a
task is ready to execute. The task executing might jump
from one processor to another as a processor might get idle
after executing a task. Migration is allowed in the global
dispatcher schema. The specific aspect of bandwidth
servers implementation under multi-core present in [23].
With bandwidth server, Job of each co-processor subtask is
captured as a sporadic job.
With Partition dispatcher schema, each server is first
assigned to an appropriate coprocessor then all the co-
processors subtasks of a task are then executed by a specific
server in the corresponding heterogeneous co-processor
only. Here the task cannot switch between the co-processor
and must complete executing on the same co-processor.
With Hybrid dispatcher schema, most servers are divided
into one individual coprocessor and remaining servers
might migrate between heterogeneous coprocessors and the
corresponding coprocessor subtasks might be split to
increase performance.
Proposed system also implement the task migration which
either involves migrating the waiting tasks from busy co-
processor to the newly idle co-processor or migrating
aperiodic tasks to idle co-processor.

V. HETEROGENEOUS MULTI-CORE SCHEDULING

ALGORITHM [15]

 Create the sample task which will run in the
background and various options like global,
partition, hybrid to select dispatcher technique.
Code to get those tasks for scheduling and
Different threads generation for core.

 Order the tasks to maintain precedence constraints.
Bandwidth server model, where server size is
calculated according to heterogeneous co-
processors.

 Schedule the task to the processor and also create
the dispatcher so that bandwidth server is assigned
to co-processor.

 Schedule the task and subtasks between different
cores with the help of dispatchers so that
processors are scheduled by maintaining
precedence constraints and non-preemptive task
executions in the co-processors.

 Global partition require that different sub-task
when executing will migrate co-processor, so we
will implement a migration policies which
maintains the system schedulable in spite of
migration overhead generated.

VI. CONCLUSION
 This paper has explored the previous heterogeneous dual-
core scheduling as well as multi-core scheduling. To extend
this scheduling, we have proposed a new scheduling
algorithm called heterogeneous multi-core scheduling
algorithm for task with a key technique is called as a
dispatcher mechanism with different schemas such as

Non-preemptive scheduling

Processor

Task
-1

Task
-2

Task
-n

Pre-emptive
scheduling

Bandwidth server
to subtask

Co-
processor

Migration

Co-
processor

Co-
processor

Select Dispatcher

Poonam Karande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 636-639

www.ijcsit.com 638

global schema, Partition schema, and hybrid schema with
consideration of precedence constraints as well as non-
preemptive execution on the co-processor. This paper has
also implemented Migration policies. With migration
policies it will reduce response times for tasks and also
increased complete system utilization with a guarantee of
real-time deadlines. This result also can efficiently
applicable for future mobile systems.

REFERENCES
[1] Texas Instruments, Inc., “OMAP3 Platform,” technical report,Texas

Instruments, http://www.ti.com/lit/ml/swpt024b/ swpt024b.pdf, 2009.
[2] Texas Instruments, Inc., “OMAP4 Platform,” technical

report,TexasInstruments,http://www.ti.com/lit/ml/swpt034b/swpt034
b.pdf, 2011.

[3] Qualcomm, Inc., “Snapdragon,” technical report,
Qualcomm,http://www.qualcomm.com/media/documents/snapdragon
s4-processors-system-chip-solutions-new-mobile-age, 2011.

[4] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” IEEE Trans.
Computers, vol. 39, no. 9, pp. 1175-1185, Sept. 1990.

[5] T.P. Baker, “Stack-Based Resource Allocation Policy for Real-Time
Process,” Proc. Real Time Systems Symp., 1990.

[6] P. Gai, L. Abeni, and G. Buttazzo, “Multiprocessor dsp Scheduling in
System-on-a-Chip Architecture,” Proc. Euromicro Conf. Real- Time
Systems, 2002.

[7] K. Kim, D. Kim, and C. Park, “Real-Time Scheduling in
Heterogeneous Dual-Core Architecture,” Proc. Conf. Parallel and
Distributed Systems, 2006.

[8] L. Benini, D. Bertozzi, A. Guerri, and M. Milano, “Allocation,
Scheduling and Voltage Scaling on Energy Aware MPSoCs,” Proc.
Conf. Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, 2006.

[9] M. Kim, S. Banerjee, N. Dutt, and N. Venkatasubramanian,“Design
Space Exploration of Real-Time Multi-Media mpsocs with
Heterogeneous Scheduling Policies,” Proc. Conf.
Hardware/Software Codesign and System Synthesis, 2006.

[10] C.-F. Kuo and Y.-C. Hai, “Real Time Task Scheduling on
Heterogeneous Two-Processor Systems,” Proc. Conf. Algorithms
and Architectures for Parallel Processing, 2010.

[11] B. Andersson, G. Raravi, and K. Bletsas, “Assigning Real-Time Tasks
on Heterogeneous Multiprocessors with Two Unrelated Types of
Processors,” Proc. Conf. Real-Time Systems Symp., 2010.

[12] Texas Instruments, Inc., “DSP/BIOS II Timing Benchmarks on the
TMS320C54x DSP,” technical report, Texas Instruments, http://
focus.ti.com, 2000.

[13] K.-Y. Hsieh, Y.-C. Lin, C.-C. Huang, and J.-K. Lee, “Enhancing
Microkernel Performance on VLIM DSP Processors via Multiset
Context Switch,” J. Signal Processing Systems, vol. 51, no. 3, pp.
257- 268, 2008.

[14] F.M. David, J.C. Carlyle, and R.H. Campbell, “Context Switch
Overheads for Linux on Arm Platforms,” Proc. Workshop
Experimental Computer Science, 2007.

[15]Ya-Shu Chen, Member, IEEE, Han Chiang Liao, and Ting-Hao Tsai,
Student Member, IEEE,”Online Real-Time Task Scheduling in
Heterogeneous Multi-core System-on-a-Chip” IEEE Trans on
parallel and distributed systems, vol. 24, no. 1, January 2013.

[16] Bj¨orn Andersson, Gurulingesh Raravi and Konstantinos
Bletsas, ”Assigning Real-Time Tasks on Heterogeneous
Multiprocessors with Two Unrelated Types of Processors,”Proc.
Conf. Real-Time System Symp., 2010.

[17] I-hong hou, p. r. kumar,“Scheduling Periodic Real-Time Tasks
with Heterogeneous Reward Requirements,” 2011 32nd IEEE Real-
Time Systems Symposium.

[18] Hsiang-Kuo Tang, Parmesh Ramanathan, Katherine Compton,”
Combining Hard Periodic and Soft Aperiodic Real-Time Task
Scheduling on Heterogeneous Compute Resources,” 2011 IEEE
International Conference on Parallel Processing.

[19] Zhe Wang, Sanjay Ranka and Prabhat Mishra,” Temperature-aware
Task Partitioning for Real-Time Scheduling in Embedded Systems, ”
2012 IEEE 25th International Conference on VLSI Design.

[20] Pengliu Tan, Jian Shu and Zhenhua Wu,” A Hybrid Real-Time
Scheduling Approach on Multi-Core Architectures,” journal of
software, vol. 5, no. 9, september 2010.

[21] Li Wenjing Wang Lisheng,” Energy-Considered Scheduling
Algorithm Based on Heterogeneous Multi-core Processor,” 2011
International Conference on Mechatronic Science, Electric
Engineering and Computer August 19-22, 2011, Jilin, China.

 [22] Derong Liu, Ming’e Jing, Yuwen Wang, Zhiyi Yu, Xiaoyang Zeng,
Dian Zhou,” Pipeline-based Scheduling for Heterogeneous Multi-
core Systems,”IEEE 2012.

[23] S. Baruah and G. Lipari, “Executing Aperiodic Jobs in a
Multiprocessor Constant-Bandwidth Server
Implementation,”Proc.Euromicro Conf. Real-Time Systems, 2004.

[24] Kedar M. Katre, Harini Ramaprasad, Abhik Sarkar, Frank Mueller,”
Policies for Migration of Real-Time Tasks in Embedded Multi-Core
Systems”.

Poonam Karande et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 636-639

www.ijcsit.com 639

